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Headline

1-Why similarity learning
2- Siamese neural network
3- Triplet loss

4- Applications
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Problem of Classification

Classification Object Detection
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Problem of Classification

Classification: person, face, male

Classification: person, face, male
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Problem of Classification

® The question that a classification problem cannot answer is :
Is this the same person?

- Comparison
- Ranking
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Application of similarity learning

1- Unlocking cell phones with face
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Application of similarity learning

1- Unlocking cell phones with face

Training Set
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Application of similarity learning

1- Unlocking cell phones with face
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Application of similarity learning

2- Detect the students for exam

student1

student?2
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What is the problem?

" Retrain the model every time a new student
register!!!!

" Can I actually train only one model and use it every
year for the purpose of face recognition?
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Similarity function

Low similarity

score High similarity

SCOTIC

oF
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Similarity function

Jﬁ-l—

Distance(A,B) > Threshold # Different

Person

H
e
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Similarity function
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Siamese Neural Networks

Embedding

\4

UKL
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Siamese Neural Networks
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Siamese Neural Networks

" The same network 1s used to obtain an encoding of the image
A and to obtain an encoding of the image B

" Compare these two encodings
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Siamese Neural Networks

" d(A.B) = [[f(A) —£(B)]

" If Aand B are same d(A,B) 1s small

" If Aand B are different d(A,B) 1s large
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Loss function for positive pair

= A & B are the same person

Loss=||f(A) -f(B)|] ?
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Loss function for negative pair

= Use
= A&

a Hinge loss
B are different person

max(0,m 2—|[f(A) -f(B)|] ?)
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Contrastive loss:

|

fl4)- \f (B)|*+(1- -y*)ma.rgl), m* - |
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Train the Siamese networks

e Update the weights for each channel and then average them

® C(Contrastive loss:

Bring the positive pairs together and negative pairs apart
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Triplet loss

g

v

Anchor (A)

Positive (P) Negative (N)

The goal:

[ 1f(A) -f(p)I| 2< |If(A) -F(ND)I] ?

Thema der Praesentation / Autor / 22



UNNERSITAT@OSNABRUCK

Learn Ranking with Triplet loss

L IfCA) —F(P)I| 2< [IFfC(A) —F(N)I|]| 2

[1f(A) -F(p)II] 2- | If(A) -f(N)|| 2 <O

[ H£(A) -F(P)I] - [ [f(A) -F(NDI| 2 + margin < O

L(A,.P,N)=
max(| [(A) -F()I| 2 11F(A) -FN)I| ? + margin, 0)
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Hard cases

L(A,P,N)=

max(||f(A) -f(p)|| 2- | [f(A) -F(N)|| 2 + margin, 0)

distance(A, P) ~ distance(A,N)
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Triplet loss

Negative f \

Anchor .o LEARNING e
*— o— Negative
e Anchor o
Positive Positive
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Nearest neighbor search

Query |

V%

Query |

E

Query |
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Challenges

" Random triplet loss does not work

" The number of possible triplets is huge, So the
network should be trained in a long time
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Improve Similarity learning

" Improve the loss

" Sampling:

Choose the best triplet to train your neural network with

" Ensembles:

Instead of making all decision with one neural network, use
several networks and trained with a subset of triplets

" Use a classification loss for similarity learning
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Articles

" Jian Wang, et al., Deep Metric Learning with
Angular Loss, 2017.

(propose a novel angular loss, which takes angle relationship into account, for learning better
similarity metric)

" Yuet al., Correcting the triplet selection bias for
triplet loss, 2018.

( propose a new variant of triplet loss, which tries to reduce the bias in triplet selection by
adaptively correcting the distribution shift on the selected triplets)
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Sampling Method: Hierarchical Triplet loss

* Leave of the tree= 1image classes

Weifeng Ge et al. Deep Metric Learning with Hierarchical Triplet Loss, ECCV 2018.
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Tree creation

= Create the tree: define a distance between classes

» [f the distance is small, they merge in the next step

1

= o R—
D(p!q) npnq Zl(—_‘ D,] €q ||Tl T']ll
The number of salmplle for Deep feature for image 1

each class and j
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How to find the anchor?

" Select L’ nodes at the 0 level, why?
1o preserve class diversity in the mini-batch

> Select M-1 classes at the 0 level for each L’ nodes based on the distance
in the feature space

" Number of images in the mini-batch= T*M*L’ images
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Loss function

Loss= 2= Sr crml||x% — x3|| — |1x& — xZ| + .
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All the triplets

Margin, it's going to adapt to the
differences of the samples within
the classes.
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Sampling articles

" Manmatha et al., sampling matter for deep
metric learning, (ICC 2017) — original sampling
method

(propose distance weighted sampling, which selects more informative and stable examples than
traditional approaches and show that a simple margin based loss is sufficient to outperform all
other loss functions.)

" Wang et al., Multi-similarity loss with general pair
weighting for deep metric learning(CVPR 2019)

(A family of loss functions built on pair-based computation have been proposed in the literature which provide a
myriad of solutions for deep metric learning. In this paper, they provide a general weighting framework for
understanding recent pair-based loss functions)
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Ensembles

Clusterin
s solve sub-problems

with K learners

Compute
Data Embedding

.E;'nbeddin; . Eth»edding
Layer ayer
- )
— [omeoss]

Repeat every M epochs

Sanakoyeu et al. Divide and Conquer the Embedding Space for Metric Learning,CVPR 2019
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Ensembles

" Cluster the embedding space in K clusters using K-
means

" Divide: build k independent learners at the top of
CNN

" K different sets of fully connected layers

" Congquer: use all the learners at the same time and
fine tune our network with all the training set
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Ensemble articles

" Manmatha et al., sampling matter for deep
metric learning, (ICC 2017)

" Xu et al., Deep asymmetric metric learning via
rich relationship mining, (CVPR 2019)

" Wang et al., Multi-similarity loss with general pair
weighting for deep metric learning(CVPR 2019)
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Classification loss articles

" Teh et al., ProxyNCA ++: Revisiting and Revitalizing
Proxy neighborhood component analysis, arXiv
2020.

" Elezi et al., The group loss for deep metric learning,
arXiv 2020.

(Propose Group Loss, a loss function based on a differentiable label-propagation method that
enforces embedding similarity across all samples of a group)

" Qian et al., SoftTriple Loss: deep metric learning
without triplet sampling, ICCV 2019.

(propose the SoftTriple loss to extend the SoftMax loss with multiple centers for each class)
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How to choose a model?

Table 5. Accuracy on Cars196

Concatenated (512-dim)

Separated (128-dim)

Pdl RP MAPTGR P@1 RP MAPTGR
Pretrained 46.89 13.77 5.91 43.27 13.37 4.64
Contrastive 8178 £ 0.43 35.11 £ 0.45 24.89 £ 0.50 GO.80 £ 0.38 2778 £0.34 17.24 £+ .35
Triplet 79.13 £ 0.42 3371 £ 045 23.02 £ 0.51 6G5.68 £ .58 26.67 £ 0.36 15.82 £ 0L.36
NT-Xent 80.99 £ 0.54 34.96 £ 0.38 2440 =041 6G8.16 = 0.36 27.66 £0.23 16.78 £ .24
ProxyNCA 83.56 £ 0.27 35.62 £ 0.28 2538 £ 0.31 7346 £ 0.23 28.90 £ 0.22 18.20 £ 0.22
Margin 81.16 + 0.50 34.82+0.31 24.21 +0.34 68.24 + 0.35 27.25+£0.19 16.40 + 0.20

Margin / class

80.04 £ 0.61

3378 £ 0.51

23.11 £ 0.55

67.54 = (.60

26.68 = 0.40

15.88 + (.39

N. Softmax

84.16 £ 0.25

36.20 = 0.26

26.000 = (.30

7255 =018

2035 = 0.20

15.73 = 0.20

CosFace

85.52 +0.24

3732+ 0.28

2757 £ 0.30

T4.67 £ 0.20

20,01 £0.11

18.80 £ .12

ArcFace

85.44 £ 0.28

37.02 £0.20

27.22 £ 0.30

T210 £ 0.37

27120 £0.17

17.11 £ .18

FastAP

T8.45 £0.52

33.61 £ 0.54

23.14 £ 0.56

6G5.08 = 0.36

26.599 £ 0.36

15.94 £+ (.34

SNR

82.02 £ 0.48

35.22 = 0.43

25.03 = 0.48

69.69 = (.46

2755 £0.25

17.13 = 0.26

MS

85.14 £10.29

38.09 £ 0.19

28.07T = 0.22

T3TT=0.19

29.92 £ 0.16

19.32 = 0.18

MS+Miner

8367 £ 0.34

37.08 £ 0.31

27.01 = 0.35

TLE0 (.22

2044 £ 0.21

18.86 = (.20

Soft Triple

54.49 = 0.26

37.03 £0.21

27.08 = 10.21

73.69 = 0.21

2029 £ 0.16

15,88 = (.16

Musgrave et al. A Metric Learning Reality Check paper arXiv 2020
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Points

" Use the simple baseline: contrastive loss , triplet loss,
and classification loss

" Freezing batch-norm layers, using multiple centers per
class

" Naive ensembles, copying your own network three
times instead of one training with different triplets

" Two good out-of-the-box choices:One is proxy-NCA,
the other one is soft-triplet loss

Thema der Praesentation / Autor / 40



UNIVERSITAT@OSNABRUCK

Applications

" Clustering on MNIST
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Applications

" Establishing image correspondences

O T I I O
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Applications

" Establishing image correspondences
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Image Retrieval

Generalized Mean

Pooling Normalization

Convolutional layers

Siamese learning GeM descriptor

Radenovic et al. Fine-tuning CNN Image Retrieval with No Human Annotation®. TPAMI 2018
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Application: Unsupervised learning

" Tracking provides the supervision
" Use those as positive samples
" Extract random patches as negative samples

Learning to Rank

Conv Conv Conv
Net Net Net

Query Tracked Negative
(First Frame) (Last Frame) (Random)

(b) Siamese-triplet Network (c) Ranking Objective

Wang and Gupta. Unsupervised Learning of Visual Representations using Videos®. ICCV 2015
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Question?
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