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3- Triplet loss
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Problem of Classification
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Problem of Classification

A

B

Classification: person, face, male

Classification: person, face, male
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Problem of Classification

The question that a classification problem cannot answer is : 
                                Is this the same person? 

A

B

- Comparison
- Ranking



Application of similarity learning
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1- Unlocking cell phones with face



Application of similarity learning
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1- Unlocking cell phones with face

Training Set



Application of similarity learning
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1- Unlocking cell phones with face

A

B

yesyes

NoNo



Application of similarity learning
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2- Detect the students for exam

student1

student2



What is the problem?

 

 Retrain the model every time a new student 
register!!!!

 Can I actually train only one model and use it every 
year for the purpose of face recognition?
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Similarity function
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Low similarity
score High similarity

score



Similarity function
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Distance(A,B) > Threshold Different 
Person



Similarity function
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Distance(A,B) < Threshold Same 
Person



Siamese Neural Networks
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Siamese Neural Networks
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f(A)

f(B)



Siamese Neural Networks

 The same network is used to obtain an encoding of the image 
A and to obtain an encoding of the image B

 Compare these two encodings
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Siamese Neural Networks

 d(A,B) = ||f(A) –f(B)||

 

 If A and B are same d(A,B) is small

 

 If A and B are different d(A,B) is large
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Loss function for positive pair
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Loss function for negative pair
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Contrastive loss:
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Positive pair Negative pair



Train the Siamese networks
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    Update the weights for each channel and then average them

   Contrastive loss:

    Bring the positive pairs together and negative pairs apart



Triplet loss
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     Anchor (A)                       Positive (P)                        Negative (N)

The goal:  



Learn Ranking with Triplet loss
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-

 

 



Hard cases
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-

 

distance(A, P) ~ distance(A,N)



Triplet loss
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Nearest neighbor search
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Challenges

 Random triplet loss does not work

 The number of possible triplets is huge, So the 
network should be trained in a long time
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Improve Similarity learning

  Improve the loss
 

 Sampling:
    Choose the best triplet to train your neural network with
 

 Ensembles:
    Instead of making all decision with one neural network, use           
    several networks and trained with a subset of triplets
 

 Use a classification loss for similarity learning
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Articles

 Jian Wang, et al., Deep Metric Learning with 
Angular Loss, 2017.

       (propose a novel angular loss, which takes angle relationship into account, for learning better                 
similarity metric) 

 

 Yu et al., Correcting the triplet selection bias for 
triplet loss, 2018.

       ( propose a new variant of triplet loss, which tries to reduce the bias in triplet selection by
        adaptively correcting the distribution shift on the selected triplets)
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Sampling Method: Hierarchical Triplet loss
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• Leave of the tree= image classes

Weifeng Ge et al. Deep Metric Learning with Hierarchical Triplet Loss, ECCV 2018.



Tree creation
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The number of sample for 
each class

Deep feature for image I 
and j



How to find the anchor?

 Select L’ nodes at the 0 level, why?
  To preserve class diversity in the mini-batch

  Select M-1 classes at the 0 level for each L’  nodes based on the distance   
   in the feature space

 Number of images in the mini-batch= T*M*L’ images
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 Loss=  

Loss function
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All the triplets
Margin, it's going to adapt to the 
differences of the samples within 

the classes. 



Sampling articles

 Manmatha et al., sampling matter for deep 
metric learning, (ICC 2017) – original sampling 
method

     (propose distance weighted sampling, which selects more informative and stable examples than      
    traditional approaches and show that a simple margin based loss is sufficient to outperform all    
other loss functions.)             

 Wang et al., Multi-similarity loss with general pair 
weighting for deep metric learning(CVPR 2019)
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(A family of loss functions built on pair-based computation have been proposed in the literature which provide a 
myriad of solutions for deep metric learning. In this paper, they provide a general weighting framework for 
understanding recent pair-based loss functions)



Ensembles

Thema der Praesentation / Autor / 35

Sanakoyeu et al. Divide and Conquer the Embedding Space for Metric Learning,CVPR 2019 



Ensembles

 Cluster the embedding space in K clusters using K-
means

 Divide: build k independent learners at the top of 
CNN

  K different sets of fully connected layers
 Conquer: use all the learners at the same time and 

fine tune our network with all the training set
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Ensemble articles

 Manmatha et al., sampling matter for deep 
metric learning, (ICC 2017)

 Xu et al., Deep asymmetric metric learning via 
rich relationship mining, (CVPR 2019)

 Wang et al., Multi-similarity loss with general pair 
weighting for deep metric learning(CVPR 2019)
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Classification loss articles

 Teh et al., ProxyNCA ++: Revisiting and Revitalizing 
Proxy neighborhood component analysis, arXiv 
2020.

 Elezi et al., The group loss for deep metric learning, 
arXiv 2020.

      (Propose Group Loss, a loss function based on a differentiable label-propagation method that                
enforces embedding similarity across all samples of a group)
   

 Qian et al., SoftTriple Loss: deep metric learning 
without triplet sampling, ICCV 2019.

       (propose the SoftTriple loss to extend the SoftMax loss with multiple centers for each class)
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How to choose a model?
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Musgrave et al. A Metric Learning Reality Check paper arXiv 2020



Points
 
 Use the simple baseline: contrastive loss , triplet loss, 

and classification loss
 
 Freezing batch-norm layers, using multiple centers per 

class
 Naive ensembles, copying your own network three 

times instead of one training with different triplets
 Two good out-of-the-box choices:One is proxy-NCA, 

the other one is soft-triplet loss
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Applications
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 Clustering on MNIST
 
 
 



Applications
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 Establishing image correspondences
 
 
 



Applications
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 Establishing image correspondences
 
 
 



Image Retrieval
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Radenovic et al. Fine-tuning CNN Image Retrieval with No Human Annotation“. TPAMI 2018



Application: Unsupervised learning
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 Tracking provides the supervision
 Use those as positive samples
 Extract random patches as negative samples

 
 
 
 

Wang and Gupta. Unsupervised Learning of Visual Representations using Videos“. ICCV 2015
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Question?
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